Technology qualification of flexible pipes based on learnings from previous failures

Flexible pipe seminar – Management of Integrity, aging, sharing of experiences and continuous improvement.

Andreas Aardal, Dag McGeorge, Nils Sødahl
04 December 2019
Content

- Historical experiences
- Examples of ongoing technology qualification
- Technology qualification – areas of increased awareness
- Component- versus scenario oriented threat assessment
- Main objective: Discuss how to handle complex failure modes involving ageing and other time dependant degradation mechanisms
Evolution of flexible pipe technology

- High pressure flexible pipe introduced early 70ites
- Today - a key enabler for floating production
 - More than 3000 dynamic risers have been produced
- Continuous technology development push
 - Dynamic application in harsh environment
 - High internal/external pressure
 - High temperature
 - Flow assurance/insulation
 - Gas risers
 - Increased bore diameter
 - Aggressive bore fluids (e.g. sour service)

- Innovation process
 - Operators setting the requirements
 - Manufacturers responding with new technical solutions
Technology Qualification (TQ) – a key element in technology evolution

- Standards/design codes represent accumulated experience for known technology
 – Addresses known failure mechanisms
 – Applies known methods
- Compliance ensures that the technology will have an acceptable margin to failure by following the requirements given in the applicable design codes

- All technology components presently considered as ‘field proven’ has once been ‘new’ technology

- Technology qualification is a vital driver in the technology evolution
 – Enables to address new technology in a responsible manner and over time make it known
- Continuous process ongoing in the industry.

- Design codes are developed/updated in parallel as the technology is matured
Some ongoing qualification activities

▪ Deep water challenges
 – Weight saving
 – Aggressive bore fluids

▪ Flow assurance
 – Mitigate hydrate/wax formation
 – Continues/intermittent heating requirements
 – Risers/flowlines

▪ Flip mitigation
 – ‘Smooth’ carcass profiles

▪ ‘Hybrid’ composite cross-sections
 – Composite tensile and/or pressure armour
 – Stainless steel tensile and/or pressure armour

▪ Active electrical heating
 – Riser: floater to subsea heating
 – Flowlines: subsea to subsea heating

▪ New carcass solutions
 – T-profile, K-carcass etc
Some unexpected incidents in the evolution of flexible pipes

Some serious issues
- PVDF Pressure sheath pull-out from end-fitting
- ‘Singing risers’ caused by vortex induced carcass vibrations of gas risers
- Carcass tear off in 3 layer PVDF pressure barrier risers.

Consequences
- Potential safety threats
- Shut-downs, loss of production
- Riser replacements
- Time consuming root cause investigations

Causes
- Unknown failure mechanisms
- Not addressed in design, manufacturing, operation.
Dissection and failure investigations – Key elements of RCA fact finding

- Failure event recordings
- Operational history
- Previous experience - similar failures

+

- Failure investigations
- Dissections
- Material characterisation
- Metallurgical investigations

- Basis for root cause investigations (facts)
Why did this happen?

▪ **Root cause**
 – Most severe consequences are linked to overlooking a failure mechanism when introducing new technology
 – Some complex mechanical aspects of flexible pipes not accounted for properly
 – Complexity overlooked in design/operation
 – The root cause of failure can be surprisingly simple when the problem is fully understood

▪ **How can we prevent this from happening again?**
 – What can be improved in the TQ process to reduce the risk of overlooking failure mechanisms?
 – How to capture possible complex failure when introducing new technology?
TQ process – main steps (DNV-RP-A203) and areas of increased awareness

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification Basis</td>
<td></td>
</tr>
<tr>
<td>Technology Assessment</td>
<td></td>
</tr>
<tr>
<td>Threat Assessment</td>
<td></td>
</tr>
<tr>
<td>Qualification Plan</td>
<td></td>
</tr>
<tr>
<td>Execution of plan</td>
<td></td>
</tr>
<tr>
<td>Performance Assessment</td>
<td></td>
</tr>
</tbody>
</table>

What is new?
- Define technology components requiring qualification
- *Increased awareness* not to exclude anything

What can go wrong?
- Identify failure modes/mechanism
- Traditional *component oriented* FMEA
- *Scenario oriented* FMEA capture complex failure developments

- The qualification plan is incomplete if something is missed
- Might lead to overlooking failure modes/mechanisms
Technology assessment – identification what to consider in the TQ process

- Identification of new technology issues not addressed by existing design practice/standards
- Be very careful not to exclude seemingly ‘harmless’ modifications as new technology
- Small modifications can make a huge difference
- Modifications to improve performance could trigger new failure modes
- ‘Known’ technology elements that may influence ‘new’ technology elements should be included
- Assessment shall be based on documented track records, not subjective statements like ‘this has been used before’ and ‘will not have any influence’
- If in doubt, include in TQ scope.
Traditional FMEA (Failure Mode and Effect Analysis) – component oriented

Typical working process
- Technology is broken down in components
 - E.g. carcass, liner, pressure armour etc
- Function of each component is identified
- Threats are identified as mechanisms leading to loss of function for each component

- Fundamental process for failure mode identification
- Shall always be carried out as a starting point

Complex failure modes - some challenges
- Capture interaction between components
 - Interfaces and failure mechanism involving several components
- Capture influence of time dependant degradation mechanisms
 - E.g. creep, ageing etc not leading to loss of function itself
- Capture timeline of failure development
 - Manufacturing, installation, operation
 - Combination with time dependant degradation mechanisms

- Possible, but challenging to handle in traditional FMEA
- Require special attention to capture complex failure mechanisms
Scenario oriented FMEA

- Targeted scenario oriented FMEA
 - Focus on possible complex failure developments (timeline and interaction)
 - Supplement to component oriented FMEA
 - Build on failure modes identified in component oriented FMEA

- Identify scenarios leading to loss of function
 - Timeline of failure development (sequence of events)
 - Manufacturing, installation, operation
 - Interfaces and failure mechanisms involving several components
 - Capture influence of time dependant degradation mechanisms (creep, ageing, etc)

- Working process
 - Workshop with multidiscipline competence
 - Focus on the process- follow the loads, look for failure mechanisms
 - Reporting format: mind-map, event-tree, spreadsheet etc as appropriate
Example: Carcass tear off in 3-layer PDF risers

- Concluded root cause: loss of core holding force
 - Volume loss of PVDF layers (loss of plasticizer)
 - Creep of anti-creep layer into pressure amour
- Axial overload of carcass due to:
 - Thermal contraction of sacrificial sheath
 - Increased thermal load due to aged sacrificial sheath
 - Self weight of riser core
 - Pressure bulk compacting of sacrificial sheath
- Carcass spin-out follows initial overload
 - Starts at the radially unsupported end of carcass inside topside end-fitting (weakest point)
- Critical load case: Pressure test of cold riser

Ref: Several papers 2013-2017 by Equinor, 4Subsea and DNVGL
Carcass tear off - publications

- ‘Findings from dissection and testing of used flexible risers’. Skjerve, H., Kristensen, C., Muren, J., Søfferud, M., and Engelbreth, K. I., OMAE 2014
- ‘Full-scale Validation of Axial Carcass Loads in Flexible Pipe Structure from cyclic pressure load and temperature.’ Claus E Kristensen, Jan Muren, Andreas Gjendal, Erik B Hanssen, Bjørn, Melve, Nils Sødahl, Bjørn Engh, Mario Søfferud, OMAE2017-62042
- ‘Time Dependent Carcass-liner Interface load model’ Geir Skeie, Roger Wold, Nils Sødahl, OMAE2017-64439
Knowing the failure mechanisms is everything

- Design – known technology
 - Acceptance criteria covered by design codes
 - Identification of critical failure mechanisms/parameters
 - For in-service follow-up

- Technology qualification – new technology
 - Basis for qualification program
 - Controls to mitigate loss of function - design methodology
 - Finds missing acceptance criteria

- Operational follow-up
 - Inspection/monitoring
 - Criticality ranking - RBI

- Life time extension
Conclusions

- Technology boundaries are continuously expanded to meet operator demands
- Highly competent and dedicated manufacturers
- A thorough TQ process can contribute significantly to reduce the inherent risks involved in the future technology development of flexible pipe technology
- Threat assessment should include component- and scenario oriented FMEA
- TQ should be an integral part of the development process, not an after-thought
- This will also contribute to reduced project risks, very expensive to discover something serious late in the process
- TQ is a small investment compared to possible consequences of overlooking a failure mechanism

But regardless what we do, there will always be a residual risk....